

Mechanisms of Varnish Formation and Implications for the Use of Varnish-Removal Technology

MATTHEW G. HOBBS, PH.D. PETER DUFRESNE JR. SHIRIN BEHYAN, PH.D. PIERRE KENNEPOHL, PH.D.

Mechanisms of Varnish Formation and Implications for the Use of Varnish Removal Technology

STLE 2017, Atlanta, GA

Matthew G. Hobbs, Ph.D. EPT, Calgary, AB, Canada

Peter T. Dufresne Jr. EPT, Calgary, AB, Canada

Shirin Behyan, Ph.D. UBC, Vancouver, BC, Canada

Pierre Kennepohl, Ph.D. UBC, Vancouver, BC, Canada

Who We Are

EPT: Specialize in resin-based lubricant treatments.

- 20 years experience.
- 1,000 installations.
- Extensive R&D:
 - Advancing the science of lubrication.

Varnish Intro

- "A thin, hard, lustrous, oil-insoluble deposit, composed primarily of organic residue."
- Oil breakdown product.
 - Deposits on surfaces.
- Leads to equipment reliability problems.
- Oil Analysis:
 - Fluid's potential to form varnish assessed by MPC.
 - Quantifies organic residue left on filter patch.
- Formed by thermal/oxidative breakdown of lubricant.
 - Free radical process.

Varnish Problems

Systems affected:

- Turbines
- Compressors
- Molding machines

GE Technical Information Letter:

• "All (GT) users are expected to have varnishrelated problems over time."

悉	GE ENERGY SERVICES TECHNOLOGY CUSTOMER TECHNOLOGY SERVICES 18 NOVEMBER 2005
	Compliance Category - O Timing Code - 7
TECH	VICAL INFORMATION LETTER
E OIL VARNISHING	
ICATION	
L applies to all heavy-duty gas t.	urbines.
YOSE IL is to provide customers with n, their effects and information rrent information gathered to da filance Category	information regarding the formation of varnish or lacquers within the lube al regarding mitigation technologies. Please note that this information represents te.
O - Optional	identifies changes that may be beneficial to some, but not necessarily all, operators. Accomplishment is at customer's discretion.
M - Maintenance	Identifies maintenance guidelines or best practices for reliable equipment operation.
C - Compliance Required	Identifies the need for action to correct a condition that, if left uncorrected, may result in reduced equipment reliability or efficiency. Compliance may be required within a sectific aperation time.
	redence ment a spectre operating errer
A – Alert	Failure to comply with the TIL could result in equipment damage or facility damage. Compliance is mandated within a specific operating time.
A – Alert S – Safety	Failure to comply with the TL could result in equipment damage or facility damage. Compliance is mandated within a specific operating time. Failure do comply with this TL could result in personal injury. Compliance is mondated within a specific operating time.
A – Alert S – Safety g Code	Failure to comply with the TIL could result in equipment damage or facility damage. Compliance is mandated within a specific operating time. Failure to comply with this TIL could result in personal injury. Compliance is mandated within a specific operating time.
A – Alert S – Safety g Code 1 Prior to Unit Startup /	Folure to comply with the TL could result in equipment damage or facility damage. Complance is mandated within a specific operating time. Folure to comply with this TL could result in personal injury. Compliance is mandated within a specific operating time. Prior to Continued Operation (forced outage condition)
A – Alert S – Safety g Code 1 Prior to Unit Startup / 2 At First Opportunity (n	Folure to comply with the TL could result in equipment damage or facility damage. Compliance is mandated within a specific operating time. Folure to comply with this TL could result in personal injury. Compliance is mandated within a specific operating time. Prior to Continued Operation (forced outage condition) ext shutdown)
A – Alert S – Safety gCode 1 Prior to Unit Startup / 2 At First Opportunity in 3 Prior to Operation of A	Folure to comply with the TL could result in equipment domage or facility damage. Compliance is mandated within a specific operating time. Folure to comply with this TL could result in personal injury. Compliance is mandated within a specific operating time. Prior to Continued Operation (forced outage condition) ext shutdown) ffected System
A – Alert S – Safety g Code 1 Prior to Unit Startup / 2 At First Opportunity in 3 Prior to Operation of A 4 At First Exposure of Co	Folure to comply with the TL could result in equipment domage or facility damage. Compliance is mandated within a specific operating time. Folure to comply with this TL could result in personal injury. Compliance is mandated within a specific operating time. Prior to Continued Operation (forced outage condition) ext shutdown) frected System imporent
A - Alert S - Safety g Code 1 Prior to Unit Startup / 2 At First Opportunity in 3 Prior to Operation of A 4 At First Exposure of Co 5 At Scheduled Compor	Folure to comply with the TL could result in equipment domage or facility damage. Compliance is mandated within a specific operating time. Folure to comply with this TL could result in personal injury. Compliance is mandated within a specific operating time. Prior to Continued Operation (forced outage condition) ext shutdown Iffected System Imponent ent Part Repair or Replacement
A - Alert S - Safety g Code 1 Prior to Unit Startup / 2 At First Opportunity in 3 Prior to Operation of A 4 At First Exposure of Co 5 At Scheduled Compor 6 Next Scheduled Cottog	Folure to comply with the TL could result in equipment domage or facility damage. Compliance is mandated within a specific operating time. Folure to comply with this TL could result in personal injury. Compliance is mandated within a specific operating time. Prior to Continued Operation (forced outage condition) ext shutdown iffected System imponent ent Part Repair or Replacement Ie

Varnish and Radicals

Thermo-oxidative oil degradation is a radical process:

- Radicals: species with unpaired electron (·).
 - Highly reactive.
- Oil radicals propagate to form polar oxidized compounds.
 - Varnish precursors.
- Previous studies:
 - Focus on final varnish deposits.
- This study:
 - Focus on radical intermediates.
 - Measure radicals during oil breakdown.

Textbook Oil Oxidation

Textbook mechanism of hydrocarbon oxidation:

• INITIATION – A radical is formed:

 $C-H + \cdot O_2 \rightarrow C \cdot + H-O_2$

• PROPAGATION – One reactive radical becomes many:

 $C + O_2 \rightarrow C - O - O \cdot$ $C - O - O + C - H \rightarrow C - O - O - H + C \cdot$ $C - O - O - H \rightarrow C - O \cdot + \cdot O - H$ $Net Reaction: C - H + O_2 \rightarrow C - O \cdot + \cdot O - H$

Net Result: 1 radical begets 2 radicals which react with C-H to beget more radicals.

• TERMINATION – Non-radical breakdown products are formed:

C-O-O-H → O=C-O-H C· + ·C → C-C

Radical Detection

- Electron paramagnetic resonance (EPR).
- Reactive radicals short-lived.
 - 1/1,000,000 of a second.
- Short lifetime makes detection difficult.
- Radical traps:
 - React with short-lived radicals.
 - Form stable (long lived) radical adducts.
 - Common radical trap: α-phenyl N-*tert*-butyl nitrone (PBN).

Source: J. Optoelectron. Adv. Mater. 2007, 9, 1010–1013; Bruker.

Oil Breakdown

Lab-Scale Oxidative Degradation of Mineral Oil:

• Monitor patch color (MPC) to assess varnish potential.

Radicals Produced by Oil Breakdown

Repeat and monitor radical intermediates by EPR:

- Non-additized Group II base oil with PBN trap subjected to 95°C under:
 - Air atmosphere.
 - Argon atmosphere.
- EPR spectra integrated at regular intervals to quantify radical levels.

Unexpected Results

• Radical levels as a function of time during degradation:

- Unexpected:
 - 1. Radicals form in absence of O_2 .
 - 2. Higher radical levels observed in absence of O_2 .
 - 3. Varnish (eventually) formed in absence of O_2 .

Rethinking Oil Oxidation

- 1. Radicals form without O₂:
 - Inconsistent with O₂ initiation.
 - Alternative process responsible for initiation.

 $\frac{R_{3}C-H+O_{2}}{O_{2}} \xrightarrow{\rightarrow} R_{3}C-+O-O-H$ O_{2} Initiation

```
C-C \rightarrow C \cdot + C \cdot and/or C-H \rightarrow C \cdot + H \cdot
```

Homolytic Cleavage

- 2. Higher radical levels without O_2 :
 - O₂ can trap oil radicals.
 - O₂ competes with PBN to trap radicals.
 - Competition produces non-radical oxidation products.

Rethinking Oil Oxidation

- INITIATION: radicals form with/without O_2 . With O_2 : C-C \rightarrow C \cdot + C \cdot C-H \rightarrow C \cdot + H \cdot C-H + $O_2 \rightarrow$ C \cdot + H- O_2
- PROPAGATION: Net radical increase with O₂. No net change without O₂.

With O_2 : $C + O_2 \rightarrow C - O - O \cdot$ $C - O - O \cdot + C - H \rightarrow C - O - O - H + C \cdot$ $C - O - O - H \rightarrow C - O \cdot + \cdot O - H$

- TERMINATION: Polar oxidation products form with O₂.
 - Without O₂, non-polar hydrocarbons form.

With O_2 : C-O· + ·O-H \rightarrow C-O-O-H \rightarrow O=C-O-H Without O_2 : $C-C \rightarrow C \cdot + C \cdot$ $C-H \rightarrow C \cdot + H \cdot$

Without O_2 : $C \cdot + C - H \rightarrow C - H + C \cdot$ $H \cdot + C - H \rightarrow H - H + C \cdot$

Without O_2 : $C \cdot + \cdot C \rightarrow C - C$ $H \cdot + \cdot C \rightarrow C - H$

Varnish Without Oxygen?

- 3. Why did varnish form under argon in our experiment?
 - PBN to blame?
 - PBN and its radical adducts are polar.
 - Without PBN:
 - With O₂ varnish still produced.
 - Without O₂ varnish *NO longer produced*.
- Varnish does not form in the absence of polar species.

Varnish Mitigation

Conclusions from radical breakdown experiments:

- Oxygen is not required to initiate oil breakdown.
- When present, oxygen traps radicals leading to polar varnish precursors.
- Varnish does not form in the absence of polar species.
- Prevent varnish by:
 - 1. Preventing formation of polar species.
 - 2. Removing polar species as they form.

1) Prevent Oxidation

Limit formation of polar breakdown products.

- Limit fluid's contact with O₂.
 - Prevents O₂ from trapping radicals.
 - N₂ blanket over fluid reservoirs.
 - Dry N_2 also removes H_2O from oil.

面,

2) Remove Polar Species

If polar products do form, remove them.

- Use resin-based technology.
 - Removes polar breakdown products.
 - Varnish does not form in absence of polar products.

Image Source: Argonne National Laboratory

SVR (Soluble Varnish Removal) Skid

Resin-Based Varnish-Removal

Oil degradations: with & without resin to remove polar breakdown products.

Summary

- Thermo-oxidative lubricant breakdown leads to varnish formation.
 - Radical process.
- EPR study of radical intermediates involved in oxidation revealed:
 - Initiation of breakdown does not require O₂ as previously thought.
 - Oil hydrocarbons form radicals on their own.
 - Role of O₂: trap which promotes radical propagation.
 - Results in O₂ incorporation to form polar breakdown products.
 - Polar products result in varnish formation.
- 2 Strategies to mitigate the risk of lubricant varnishing:
 - 1. Don't allow polar breakdown products to form:
 - Limit lubricant exposure to O₂ using inert N₂ blanket.
 - 2. Remove any polar breakdown products which do form:
 - Use resin to remove soluble polar species before they can form varnish.
 - Improve lubricant condition and maintain it even under degrading conditions.

Thank you!